MMAT5010 Linear Analysis (2024-25): Homework 2 Deadline: 8 Feb 2025

Important Notice:

 \clubsuit The answer paper must be submitted before the deadline.

 \blacklozenge The answer paper MUST BE sent to the CU Blackboard.

- 1. Recall that a subset D of a normed space X is said to be dense in X if $\overline{D} = X$.
 - (a) Show that if the finite sequence space c_{00} is endowed with the $\|\cdot\|_1$ -norm, then it is a dense subspace of ℓ_1 .
 - (b) When c_{00} is endowed with the $\|\cdot\|_{\infty}$, show that it is not a dense subspace of ℓ_{∞} .
- 2. (a) Show that every convergent sequence in a norm space is bounded, that is, $\sup_n ||x_n|| < \infty$ when (x_n) is a convergent sequence in a normed space X.
 - (b) For each pair of elements x and y in ℓ_{∞} , we define the product $x * y \in \ell_{\infty}$ by

$$x * y(k) := x(k)y(k)$$
 for $k = 1, 2, ...,$

Show that the product $* : \ell_{\infty} \times \ell_{\infty} \to \ell_{\infty}$ is continuous, that is, $x_n * y_n \to x * y$ whenever $x_n, y_n \in \ell_{\infty}$ with $x_n \to x$ and $y_n \to y$. (Hint: use Part (a))

* * * End * * *